ABSTRACT:

The exact performance analysis of large-scale software systems with discrete-state approaches is difficult because of the well-known problem of state-space explosion. This paper considers this problem with regard to the stochastic process algebra PEPA, presenting a deterministic approximation to the underlying Markov chain model based on ordinary differential equations. The accuracy of the approximation is assessed by means of a substantial case study of a distributed multithreaded application.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Measuring Fitness and Precision of Automatically Discovered Process Models: A Principled and Scalable Approach ABSTRACT: We are able to generate a process model by using automated process discovery techniques,
PROJECT TITLE : Millimeter-Wave Mobile Sensing and Environment Mapping Models, Algorithms and Validation ABSTRACT: One relevant research paradigm, particularly at mm-wave and sub-THz bands, is to integrate efficient connectivity,
PROJECT TITLE : Scalable and Practical Natural Gradient for Large-Scale Deep Learning ABSTRACT: Because of the increase in the effective mini-batch size, the generalization performance of the models produced by large-scale distributed
PROJECT TITLE : On Model Selection for Scalable Time Series Forecasting in Transport Networks ABSTRACT: When it comes to short-term traffic predictions, up to the scale of one hour, the transport literature is quite extensive;
PROJECT TITLE : PPD: A Scalable and Efficient Parallel Primal-Dual Coordinate Descent Algorithm ABSTRACT: One of the most common approaches to optimization is called Dual Coordinate Descent, or DCD for short. Due to the sequential