ABSTRACT:

Energy infrastructure is a critical underpinning of modern society that any compromise or sabotage of its secure and reliable operation has an enormous impact on people's daily lives and the national economy. The massive northeastern power blackout of August 2003 and the most recent Florida blackout have both revealed serious defects in both system-level management and device-level designs of the power grid in handling attacks. At the system level, the control area operators lack the capability to 1) obtain real-time status information of the vastly distributed equipment; 2) respond rapidly enough once events start to unravel; and 3) perform coordinated actions autonomously across the region. At the device level, the traditional hardware lacks the capability to 1) provide reliable frequency and voltage control according to system demands and 2) rapidly reconfigure the system to a secure state through switches and power-electronics based devices. These blackouts were a wake-up call for both the industry and academia to consider new techniques and system architecture design that can help assure the security and reliability of the power grid. In this paper, we present a hardware-in-the-loop reconfigurable system design with embedded intelligence and resilient coordination schemes at both local and system levels that would tackle the vulnerabilities of the grid. The new system design consists of five key components: 1) a location-centric hybrid system architecture that facilitates not only distributed processing but also coordination among geographically close devices; 2) the insertion of intelligence into power electronic devices at the lower level of the power grid to enable a more direct reconfiguration of the physical makeup of the grid; 3) the development of a robust collaboration algorithm among neighboring devices to handle possible faulty, missing, or incomplete information; 4) the design of distributed algorithms to better understand the local state of the pow-
-
er grid; and 5) the adoption of a control-theoretic real-time adaptation strategy to guarantee the availability of large distributed systems. Preliminary evaluation results showing the advantages of each component are provided. A phased implementation plan is also suggested at the end of the discussion.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Design, Analysis, and Implementation of ARPKI: An Attack-Resilient Public-Key Infrastructure - 2018ABSTRACT:This Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is based on a weakest-link security
PROJECT TITLE :Double Error Cellular Automata-Based Error Correction with Skip-mode Compact Syndrome Coding for Resilient PUF Design - 2018ABSTRACT:Physical Unclonable Functions (PUFs) gift an enticing security primitive thanks
PROJECT TITLE :Design, Evaluation and Application of Approximate High-Radix Dividers - 2018ABSTRACT:Approximate high radix dividers (HR-AXDs) are proposed and investigated during this paper. High-radix division is reviewed and
PROJECT TITLE :Hybrid Modulation Based Bidirectional Electrolytic Capacitor-less Three-phase Inverter for Fuel Cell Vehicles: Analysis, Design, and Experimental Results - 2017ABSTRACT:This paper presents a novel six-pulse low-frequency
PROJECT TITLE :Hybrid Modulation Based Bidirectional Electrolytic Capacitor-less Three-phase Inverter for Fuel Cell Vehicles: Analysis, Design, and Experimental Results - 2017ABSTRACT:This paper presents a unique six-pulse low-frequency

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry