Energy Management Optimization in a Battery/Supercapacitor Hybrid Energy Storage System


Batteries and supercapacitors (SC) complement one another; a battery has a relatively high energy density but a low power density, whereas an SC has a relatively high power density but a low energy density. In order to offset their opposing limitations, an active battery/SC hybrid energy storage system (HESS) using a dc/dc converter has been proposed. The major problem concerning an active HESS is in how to control the current flow in order to achieve two objectives: the minimization of the magnitude/fluctuation of the current flowing in and out of the battery and the energy loss seen by the SCs. This problem has not been analytically investigated for an optimal solution regarding these two goals. In this paper, we present an optimal energy management scheme for active HESS. In order to obtain the optimal solution, we formulate the problem as an optimization problem concerning these two objectives. Observing that the feasibility and optimality of the solution critically depends on the boundary parameters of the problem, we present an algorithm that effectively adjusts the parameter values. The proposed algorithm is based on the multiplicative-increase- additive-decrease principle, which guarantees a feasible optimal solution. Through MATLAB simulations, we demonstrate that the proposed scheme can optimally minimize the magnitude/fluctuation of the battery current and the SC energy loss.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Energy-Efficient D2D Communications Underlaying NOMA-Based Networks With Energy Harvesting - 2018ABSTRACT:This letter investigates the resource allocation downside in device-to-device (D2D) communications underlaying
PROJECT TITLE :Distributed-Relay Beamforming for Secrecy Energy Efficiency With Coordinated Eavesdroppers - 2018ABSTRACT:This letter proposes a secure and energy efficient beamforming theme for a distributed amplify-and-forward
PROJECT TITLE :Capacity Maximizing Adaptive Power Splitting Protocol for Cooperative Energy Harvesting Communication Systems - 2018ABSTRACT:In this letter, we have a tendency to propose a unique power splitting (PS) protocol
PROJECT TITLE :Stochastic Routing and Scheduling Policies for Energy Harvesting Communication Networks - 2018ABSTRACT:During this Project, we have a tendency to study the joint routing-scheduling downside in energy harvesting
PROJECT TITLE :Spatial Field Reconstruction and Sensor Selection in Heterogeneous Sensor Networks With Stochastic Energy Harvesting - 2018ABSTRACT:We tend to address the two fundamental issues of spatial field reconstruction and

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry