The unscented Kalman filter (UKF) has become a popular alternative to the extended Kalman filter (EKF) during the last decade. UKF propagates the so called sigma points by function evaluations using the unscented transformation (UT), and this is at first glance very different from the standard EKF algorithm which is based on a linearized model. The claimed advantages with UKF are that it propagates the first two moments of the posterior distribution and that it does not require gradients of the system model. We point out several less known links between EKF and UKF in terms of two conceptually different implementations of the Kalman filter: the standard one based on the discrete Riccati equation, and one based on a formula on conditional expectations that does not involve an explicit Riccati equation. First, it is shown that the sigma point function evaluations can be used in the classical EKF rather than an explicitly linearized model. Second, a less cited version of the EKF based on a second-order Taylor expansion is shown to be quite closely related to UKF. The different algorithms and results are illustrated with examples inspired by core observation models in target tracking and sensor network applications.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Correction to “Alternative Formulations of the Fields Constitutive Relations for the Efficiency of the Time Domain Analysis of Magnetized Ferrites”ABSTRACT:Within the title paper, we used variable transformation
PROJECT TITLE :Using Flexibility in P-Circuits by Boolean RelationsABSTRACT:During this paper we study the matter of characterizing and exploiting the entire flexibility of a special logic architecture, referred to as P-circuits,
PROJECT TITLE :Designing Conservation Relations in Layered Synthetic Biomolecular NetworksABSTRACT:In Artificial Biology, biomolecular networks are designed and created to perform specified tasks. Design ways for these networks
PROJECT TITLE :Learning Proximity Relations for Feature SelectionABSTRACT:This work presents a feature choice methodology based mostly on proximity relations learning. Each single feature is treated as a binary classifier that
ABSTRACT: The Machine Learning (ML) field has gained its momentum in virtually any domain of analysis and simply recently has become a reliable tool within the medical domain. The empirical domain of automatic learning is employed

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry