ABSTRACT:

Over the last decade, several set-based worst-case beamformers have been proposed. It has been shown that some of these beamformers can be formulated equivalently as one-dimensional (1D) covariance fitting problems. Based on this formulation, we show that these beamformers lead to inherently nonoptimum results in the presence of interferers. To mitigate the detrimental effect of interferers, we extend the 1D covariance fitting approach to multidimensional (MD) covariance fitting, modeling the source steering vectors by means of uncertainty sets. The proposed MD covariance fitting approach leads to a nonconvex optimization problem. We develop a convex approximation of this problem, which can be solved, for example, by means of the logarithmic barrier method. The complexity required to compute the barrier function and its first- and second-order derivatives is derived. Simulation results show that the proposed beamformer based on MD covariance fitting achieves an improved performance as compared to the state-of-the-art narrowband beamformers in scenarios with large sample support.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Robust Modulation of PWM-Based Multi-Level Perpendicular Magnetic Recording for Conventional Media - 2018ABSTRACT:During this letter, we propose a sturdy 3-ary modulation for a pulse width modulation (PWM)-based
PROJECT TITLE :Robust Automated VHF Modulation Recognition Based on Deep Convolutional Neural Networks - 2018ABSTRACT:This letter proposes a completely unique modulation recognition algorithm for terribly high frequency (VHF)
PROJECT TITLE :Robust Chance Constrained Power Allocation Scheme for Multiple Target Localization in Colocated MIMO Radar System - 2018ABSTRACT:Taking into consideration the probabilistic uncertainty on the target radar cross
PROJECT TITLE :A Robust Parallel Algorithm for Combinatorial Compressed Sensing - 2018ABSTRACT:It was shown in previous work that a vector x E R n with at most k
PROJECT TITLE :Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model - 2018ABSTRACT:Low-light image enhancement ways based on classic Retinex model try to govern the estimated illumination and to project it

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry