ABSTRACT:

We study the problem of joint quantization and power allocation in wireless sensor networks where spatially distributed sensors observe a Gaussian random source, quantize the resulting noisy observations, and transmit over orthogonal fading channels to a remote fusion center (FC). The role of the FC is to reconstruct the source with minimal distortion using linear minimum mean square error estimation rule. In this paper, we undertake the design of joint quantization and power allocation based on the following optimization problem: minimize the reconstruction distortion for a given total network power consumption. To address this problem, at each sensor node uniform scalar quantization is assumed. Moreover, assuming pseudo-quantization noise model we show that the problem can be solved using a block-coordinate descent type algorithm which iteratively optimizes the quantization bits and the power allocations. The algorithm takes into account the spatial correlation, the observation noise, and the channel quality of the sensors. Numerical and simulation examples corroborate the analytical results. The examples illustrate that the proposed design holds a considerable performance gain compared to a quantization scheme based on uniform power allocation to the sensors.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Modeling and management of photovoltaic and fuel cell based alternative power systemsABSTRACT:Photovoltaic (PV) systems and fuel cells (FCs) represent interesting solutions as being various power sources with
PROJECT TITLE :Most power purpose tracking for photovoltaic solar pump basedon ANFIS tuning systemABSTRACT:Solar photovoltaic (PV) systems are a clean and naturally replenished energy source. PV panels have a distinctive point
PROJECT TITLE :A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systemsABSTRACT:Most power purpose tracking (MPPT) techniques are thought of a crucial part in photovoltaic system design to
PROJECT TITLE :Back stepping based non-linear management for most power purpose tracking inphotovoltaic systemABSTRACT:The increasing energy demands, depleting fossil fuels and increasing world warming due to carbon emission has
PROJECT TITLE :GI primarily based Management Scheme for Single Stage Grid Interfaced SECS for Power Quality ImprovementABSTRACT:This paper presents an improved generalized integrator (GI)-based control with a frequency locked

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry