Stable Subspace Tracking Algorithm Based on a Signed URV Decomposition


Subspace estimation and tracking are of fundamental importance in many signal processing algorithms. The class of “Schur subspace estimators” provides a complete parametrization of all “principal subspace estimates,” defined as the column spans of corresponding low-rank matrix approximants that lie within a specified 2-norm distance of a given matrix. The parametrization is found in terms of a two-sided hyperbolic decomposition (Hyperbolic URV, or HURV), which can be computed using hyperbolic rotations. Unfortunately, such rotations are commonly associated with numerical instabilities.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Stable Throughput and Delay Analysis of a Random Access Network With Queue-Aware Transmission - 2018ABSTRACT:In this Project, we tend to contemplate a 2-user and a 3-user slotted ALOHA network with multi-packet
PROJECT TITLE :A Highly Efficient Composite Class-AB–AB Miller Op-Amp With High Gain and Stable From 15 pF Up To Very Large Capacitive Loads - 2018ABSTRACT:In this paper, a highly power-economical category-AB–AB Miller op-amp
PROJECT TITLE : Depth Reconstruction From Sparse Samples: Representation, Algorithm, and Sampling - 2015 ABSTRACT: The fast development of 3D technology and computer vision applications has motivated a thrust of methodologies
PROJECT TITLE : Stable and Fair Power Control in Vehicle Safety Networks - 2016 ABSTRACT: Cooperative vehicle safety (CVS) systems operate based on frequent broadcast of vehicle state (e.g., position, heading, and speed) and
PROJECT TITLE :Stable Gain-Switched Thulium Fiber Laser With 140-nm Tuning RangeABSTRACT:We demonstrate a gain-switched thulium fiber laser which will be continuously tuned over one hundred forty nm, whereas maintaining stable

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry