An MDL Framework for Sparse Coding and Dictionary Learning


The power of sparse signal modeling with learned overcomplete dictionaries has been demonstrated in a variety of applications and fields, from signal processing to statistical inference and machine learning. However, the statistical properties of these models, such as underfitting or overfitting given sets of data, are still not well characterized in the literature. As a result, the success of sparse modeling depends on hand-tuning critical parameters for each data and application. This work aims at addressing this by providing a practical and objective characterization of sparse models by means of the minimum description length (MDL) principle—a well-established information-theoretic approach to model selection in statistical inference. The resulting framework derives a family of efficient sparse coding and dictionary learning algorithms which, by virtue of the MDL principle, are completely parameter free. Furthermore, such framework allows to incorporate additional prior information to existing models, such as Markovian dependencies, or to define completely new problem formulations, including in the matrix analysis area, in a natural way. These virtues will be demonstrated with parameter-free algorithms for the classic image denoising and classification problems, and for low-rank matrix recovery in video applications. However, the framework is not limited to this imaging data, and can be applied to a wide range of signal and data types and tasks.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : On the Delay Advantage of Coding in Packet Erasure Networks - 2014 ABSTRACT: We consider the delay of network coding compared to routing with retransmissions in packet erasure networks with probabilistic erasures.
PROJECT TITLE : Joint Routing and Medium Access Control in Fixed Random Access Wireless Multihop Networks - 2014 ABSTRACT: We study cross-layer design in random-access-based fixed wireless multihop networks under a physical
PROJECT TITLE :Network Traffic Classification Using Correlation Information - 2013ABSTRACT:Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent
PROJECT TITLE :The Generalization Ability of Online Algorithms for Dependent Data - 2013ABSTRACT:We study the generalization performance of online learning algorithms trained on samples coming from a dependent source of data.
PROJECT TITLE :Learning, Retention, and Slacking: A Model of the Dynamics of Recovery in Robot TherapyABSTRACT:Quantitative descriptions of the process of recovery of motor functions in impaired subjects during robot-assisted

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry