Robust Rate-Adaptive Wireless Communication Using ACK/NAK-Feedback


To combat the detrimental effects of the variability in wireless channels, we consider cross-layer rate adaptation based on limited feedback. In particular, based on limited feedback in the form of link-layer acknowledgements (ACK) and negative acknowledgements (NAK), we maximize the physical-layer transmission rate subject to an upper bound on the expected packet error rate. We take a robust approach in that we do not assume any particular prior distribution on the channel state. We first analyze the fundamental limitations of such systems and derive an upper bound on the achievable rate for signaling schemes based on uncoded QAM and random Gaussian ensembles. We show that, for channel estimation based on binary ACK/NAK feedback, it may be preferable to use a separate training sequence at high error rates, rather than to exploit low-error-rate data packets themselves. We also develop an adaptive recursive estimator, which is provably asymptotically optimal and asymptotically efficient.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Robust Modulation of PWM-Based Multi-Level Perpendicular Magnetic Recording for Conventional Media - 2018ABSTRACT:During this letter, we propose a sturdy 3-ary modulation for a pulse width modulation (PWM)-based
PROJECT TITLE :Robust Automated VHF Modulation Recognition Based on Deep Convolutional Neural Networks - 2018ABSTRACT:This letter proposes a completely unique modulation recognition algorithm for terribly high frequency (VHF)
PROJECT TITLE :Robust Chance Constrained Power Allocation Scheme for Multiple Target Localization in Colocated MIMO Radar System - 2018ABSTRACT:Taking into consideration the probabilistic uncertainty on the target radar cross
PROJECT TITLE :A Robust Parallel Algorithm for Combinatorial Compressed Sensing - 2018ABSTRACT:It was shown in previous work that a vector x E R n with at most k
PROJECT TITLE :Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model - 2018ABSTRACT:Low-light image enhancement ways based on classic Retinex model try to govern the estimated illumination and to project it

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry