PROJECT TITLE :

Adaptive Compressed Sensing Radar Oriented Toward Cognitive Detection in Dynamic Sparse Target Scene

ABSTRACT:

Recently, the idea of compressed sensing (CS) has been used in radar system, and the concept of compressed sensing radar (CSR) has been proposed in which the target scene can be sparsely represented in the range-Doppler plane. With sufficiently incoherent transmission waveform, the target scene can be reconstructed by the technique of CS. With the idea that the transmission waveform can adapt in response to the operational information in cognitive radar system, we propose the notion of adaptive compressed sensing radar (ACSR) whose transmission waveform and sensing matrix can be updated by the target scene information fed back by the recovery algorithm. The methods for optimizing the transmission waveform and sensing matrix separately and simultaneously are both presented to decrease the cross correlations between different target responses. The principle for an ACSR system to synthesize the transmission waveform and sensing matrix matched to the target scene is also investigated. This novel ACSR system offers more degrees of freedom than classical radar system and better recovery performance than the CSR system.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Capacity Maximizing Adaptive Power Splitting Protocol for Cooperative Energy Harvesting Communication Systems - 2018ABSTRACT:In this letter, we have a tendency to propose a unique power splitting (PS) protocol
PROJECT TITLE :Adaptive Contention Window Control Scheme in Wireless Ad Hoc Networks - 2018ABSTRACT:This competition mechanism of the IEEE 802.11 distributed coordination function (DCF) is understood to own some drawbacks, e.g.,
PROJECT TITLE :Adaptive Beamforming in an Impulsive Noise Environment Using Matrix Completion - 2018ABSTRACT:In this letter, a brand new approach is presented for sturdy adaptive beamforming in an impulsive noise environment.
PROJECT TITLE :Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs - 2018ABSTRACT:This Project introduces the graph-structured recursive least
PROJECT TITLE :Adaptive Radar Detectors Based on the Observed FIM - 2018ABSTRACT:Modified versions of Rao, Wald, and Durbin tests are considered exploiting an estimator of the Fisher Information Matrix (FIM) in place of the exact

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry