Sell Your Projects | My Account | Careers | This email address is being protected from spambots. You need JavaScript enabled to view it. | Call: +91 9573777164

Adaptive Data Fusion for Wireless Localization in Harsh Environments

1 1 1 1 1 Rating 4.71 (68 Votes)


Adaptive Data Fusion for Wireless Localization in Harsh Environments


The dynamic and unpredictable characteristics of wireless channels in harsh environments have resulted in a poor performance of localization systems. Conventional implementations rely on unrealistic assumptions driven by tractability requirements, such as linear models or Gaussian errors. In this paper, we present a framework for data fusion in localization systems based on determining likelihood functions that represent the relationship between measurements and distances. In this framework, such likelihoods are dynamically adapted to the propagation conditions. The subsequent usage of a particle filter (PF) leads to an adaptive likelihood particle (ALPA) filter that addresses the nonlinear and non-Gaussian behavior of measurements over time. The ALPA filter's performance is quantified by using received-signal-strength (RSS) and time-of-arrival (TOA) measurements collected with wireless local area network (WLAN) devices. We compare the accuracy obtained to the accuracy of conventional implementations and to the posterior Cramér-Rao lower bound (PCRLB). Both empirical and simulation results show that the proposed ALPA filter significantly improves the accuracy of conventional approaches, obtaining an error close to the PCRLB.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

Adaptive Data Fusion for Wireless Localization in Harsh Environments - 4.7 out of 5 based on 68 votes

Project EnquiryLatest Ready Available Academic Live Projects in affordable prices

Included complete project review wise documentation with project explanation videos and Much More...