We introduce and experimentally demonstrate an optofluidics-based refractometer structure arranged in a simple free-space Young interferometer design. Our key idea is based on the use of a very simple microfluidic chip structure that consists of one or two flow channels arranged in parallel. We then pass the optical beam through the flow channels of the microfluidic chip. Behind the flow channels, there are two small apertures where the incident optical beam is automatically divided into two optical beams. These two optical beams are propagating in free space for a desired distance before they interfere with each other at the observation plane. Key features include simplicity in design, ease of implementation, and robustness. In the experimental demonstration, we use a 655-nm wavelength laser diode; the free-space propagation distance is 57.5 cm. The two-channel microfluidic chip has a 900-μm channel spacing, a 100-μm channel width, and a 100-μm channel depth (i.e., d/L = 9). Results indicate a sensitivity of 1.34 × 10-4 RIU in measuring the refractive index of the sucrose solution which clearly agrees with the theoretical analysis. A higher sensitivity of 6.19 × 10-6 RIU is also accomplished when the single-channel microfluidic chip with a measured d/L ratio of 0.52 is combined with an optical mask having a 600- μm channel spacing.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Free-Space Optical Communications Using on–off Keying and Source Information TransformationABSTRACT:Free-space optical communication using on–off keying (OOK) and source info transformation is proposed. It's
PROJECT TITLE :Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemesABSTRACT:In this
PROJECT TITLE :Integrated system of free-space optical and visible light communication for indoor wireless broadband accessABSTRACT:An integrated system of free-house optical communication and visible light-weight communication
PROJECT TITLE :Performance Analysis of Parallel Relaying in Free-Space Optical SystemsABSTRACT:In this paper, we investigate the knowledge theoretic performance of parallel relaying in free-area optical (FSO) communications over
PROJECT TITLE :A Novel Statistical Channel Model for Turbulence-Induced Fading in Free-Space Optical SystemsABSTRACT:During this paper, we propose a brand new probability distribution perform which accurately describes turbulence-induced

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry