Efficient GPU Spatial-Temporal Multitasking


Heterogeneous computing nodes are now pervasive throughout computing, and GPUs have emerged as a leading computing device for application acceleration. GPUs have tremendous computing potential for data-parallel applications, and the emergence of GPUs has led to proliferation of GPU-accelerated applications. This proliferation has also led to systems in which many applications are competing for access to GPU resources, and efficient utilization of the GPU resources is critical to system performance. Prior techniques of temporal multitasking can be employed with GPU resources as well, but not all GPU kernels make full use of the GPU resources. There is, therefore, an unmet need for spatial multitasking in GPUs. Resources used inefficiently by one kernel can be instead assigned to another kernel that can more effectively use the resources. In this paper we propose a software-hardware solution for efficient spatial-temporal multitasking and a software based emulation framework for our system. We pair an efficient heuristic in software with hardware leaky-bucket based thread-block interleaving to implement spatial-temporal multitasking. We demonstrate our techniques on various GPU architecture using nine representative benchmarks from CUDA SDK. Our experiments on Fermi GTX480 demonstrate performance improvement by up to 46% (average 26%) over sequential GPU task execution and 37% (average 18%) over default concurrent multitasking. Compared with the state-of-the-art Kepler K20 using Hyper-Q technology, our technique achieves up to 40% (average 17%) performance improvement over default concurrent multitasking.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Efficient Secure Outsourcing of Large-Scale Sparse Linear Systems of Equations - 2018ABSTRACT:Solving large-scale sparse linear systems of equations (SLSEs) is one in all the foremost common and basic problems in
PROJECT TITLE :Distributed Feature Selection for Efficient Economic Big Data Analysis - 2018ABSTRACT:With the rapidly increasing popularity of economic activities, a large amount of economic data is being collected. Although
PROJECT TITLE :Efficient Wideband DOA Estimation Through Function Evaluation Techniques - 2018ABSTRACT:This Project presents an economical analysis methodology for the functions involved within the computation of direction-of-arrival
PROJECT TITLE :Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs - 2018ABSTRACT:This Project introduces the graph-structured recursive least
PROJECT TITLE :Efficient Partial-Sum Network Architectures for List Successive-Cancellation Decoding of Polar Codes - 2018ABSTRACT:List successive cancellation decoder (LSCD) architectures have been recently proposed for the decoding

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry