ABSTRACT:

Due to the heterogeneity involved in smart interconnected devices, cellular applications, and surrounding (GPS-aware) environments there is a need to develop a realistic approach to track mobile assets. Current tracking systems are costly and inefficient over wireless data transmission systems where cost is based on the rate of data being sent. Our aim is to develop an efficient and improved geographical asset tracking solution and conserve valuable mobile resources by dynamically adapting the tracking scheme by means of context-aware personalized route learning techniques. We intend to perform this tracking by proactively monitoring the context information in a distributed, efficient, and scalable fashion. Context profiles, which indicate the characteristics of a route based on environmental conditions, are utilized to dynamically represent the values of the asset's properties. We designed and implemented an adaptive learning based scheme that makes an optimized judgment of data transmission. This manuscript is complemented with theoretical and practical evaluations that prove that significant costs can be saved and operational efficiency can be achieved.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Efficient Secure Outsourcing of Large-Scale Sparse Linear Systems of Equations - 2018ABSTRACT:Solving large-scale sparse linear systems of equations (SLSEs) is one in all the foremost common and basic problems in
PROJECT TITLE :Distributed Feature Selection for Efficient Economic Big Data Analysis - 2018ABSTRACT:With the rapidly increasing popularity of economic activities, a large amount of economic data is being collected. Although
PROJECT TITLE :Efficient Wideband DOA Estimation Through Function Evaluation Techniques - 2018ABSTRACT:This Project presents an economical analysis methodology for the functions involved within the computation of direction-of-arrival
PROJECT TITLE :Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs - 2018ABSTRACT:This Project introduces the graph-structured recursive least
PROJECT TITLE :Efficient Partial-Sum Network Architectures for List Successive-Cancellation Decoding of Polar Codes - 2018ABSTRACT:List successive cancellation decoder (LSCD) architectures have been recently proposed for the decoding

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry