Tackling Learning Intractability Through Topological Organization and Regulation of Cortical Networks


A key challenge in evolving control systems for robots using neural networks is training tractability. Evolving monolithic fixed topology neural networks is shown to be intractable with limited supervision in high dimensional search spaces. Common strategies to overcome this limitation are to provide more supervision by encouraging particular solution strategies, manually decomposing the task and segmenting the search space and network. These strategies require a supervisor with domain knowledge and may not be feasible for difficult tasks where novel concepts are required. The alternate strategy is to use self-organized task decomposition to solve difficult tasks with limited supervision. The artificial neural tissue (ANT) approach presented here uses self-organized task decomposition to solve tasks. ANT inspired by neurobiology combines standard neural networks with a novel wireless signaling scheme modeling chemical diffusion of neurotransmitters. These chemicals are used to dynamically activate and inhibit wired network of neurons using a coarse-coding framework. Using only a global fitness function that does not encourage a predefined solution, modular networks of neurons are shown to self-organize and perform task decomposition. This approach solves the sign-following task found to be intractable with conventional fixed and variable topology networks. In this paper, key attributes of the ANT architecture that perform self-organized task decomposition are shown. The architecture is robust and scalable to number of neurons, synaptic connections, and initialization parameters.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Tackling Performance Variability Due to RAS Mechanisms with PID-Controlled DVFSABSTRACT:As technology nodes approach deca-nanometer dimensions, many phenomena threaten the binary correctness of processor operation.
PROJECT TITLE :Good Vibrations: Schnitta Tackling Acoustical EngineeringABSTRACT:When Bonnie Schnitta saw a video of the Tacoma Bridge in Washington state collapse due to vibrations caused by wind conditions, she knew she had
PROJECT TITLE : Video Dissemination over Hybrid Cellular and Ad Hoc Networks - 2014 ABSTRACT: We study the problem of disseminating videos to mobile users by using a hybrid cellular and ad hoc network. In particular, we formulate
PROJECT TITLE : Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor Network - 2014 ABSTRACT: Recently, the research focus on geographic routing, a promising routing scheme in wireless sensor networks (WSNs),
PROJECT TITLE : Security Analysis of Handover Key Management in 4G LTESAE Networks - 2014 ABSTRACT: The goal of 3GPP Long Term Evolution/System Architecture Evolution (LTE/SAE) is to move mobile cellular wireless technology

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry