Varying-Gain Modeling and Advanced DMPC Control of an AFM System


For an atomic force microscope (AFM) system equipped with a nanosensor, an accurate varying-gain dynamic model is obtained when considering the piezoscanner bending effect, which is then utilized to design an advanced discrete-time model-predictive controller (DMPC) achieving accurate tracking performance for any given trajectory. Specifically, considering the features of the piezoscanner in the AFM system, a segmented swept signal with decreasing amplitudes is adopted as the input exerted on the piezoscanner, with the collected data utilized to setup a dynamic model based on the numerical algorithm for subspace state-space system identification (N4SID) algorithm, where the varying gain is successfully acquired by a polynomial fitting method to increase model precision. Based on the predicted dynamic behavior of the varying-gain model, an advanced DMPC algorithm is designed to fasten the system response and to enhance the robustness of the closed-loop system. The proposed modeling/control strategy is implemented and then applied to a practical AFM system, with the obtained experimental results clearly demonstrating the superior performance of the designed AFM closed-loop control system.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Modeling, Limits and Baseline of Voltage Interharmonics Generation in Andean Wind FarmsABSTRACT:The subsequent study focuses on the analysis of voltage interharmonics based mostly on power quality experimental information
PROJECT TITLE :Modeling, Measuring, and Compensating Color Weak VisionABSTRACT:We tend to use strategies from Riemann geometry to investigate transformations between the colour spaces of color-normal and color-weak observers.
PROJECT TITLE :Design, Control, and Validation of a Charge-Sustaining Parallel Hybrid BicycleABSTRACT:Traffic congestion, energy, and environmental concerns are boosting the interest for light electric vehicles. Electrically power-assisted
PROJECT TITLE :Modeling, Analysis, and Scheduling of Cluster Tools With Two Independent ArmsABSTRACT:Twin-armed cluster tools for semiconductor manufacturing sometimes have had two arms fixed in opposite directions. Recently,
PROJECT TITLE :Threshold Shock Sensor Based on a Bistable Mechanism: Design, Modeling, and MeasurementsABSTRACT:We tend to analyze and check a microelectromechanical systems (MEMS) shock sensor that switches from a initial stable

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry