ABSTRACT:

This paper describes a thermal-noise-exploiting single-electron majority logic circuit. The circuit is based on a single-electron majority logic circuit using an irreversible single- electron box that was proposed in 2003. To correctly operate the original circuit, unconventional two-step clock signals are needed to decide and hold logical outputs. Moreover, the temperature is set to 0 K because the circuit is very sensitive to thermal noise. This circuit uses conventional clock signals that lack the first step of the two-step clocks used for deciding the output, and the circuit is placed in a thermal-noise environment. The key for correct circuit operation is to base the circuit system on a model of noise- exploiting neural networks, i.e., the stochastic resonance system. The system can stochastically detect a weak input signal with the help of external noise. Thermal energy in the proposed circuit should compensate for lack of the first step of the two-step clocks. In this study, the thermal-noise-exploiting majority logic circuit was designed, and its operation was tested by using a Monte Carlo simulation. As a result, the circuit operation was evaluated, and the circuit performance was found to be improved by increasing the temperature to T ≤ 5 K, i.e., the proposed circuit can exploit thermal noise energy for correct operation.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Multi-Core Embedded Wireless Sensor Networks Architecture and Applications - 2014 ABSTRACT: Technological advancements in the silicon industry, as predicted by Moore's law, have enabled integration of billions
PROJECT TITLE : Joint Topology-Transparent Scheduling and QoS Routing in Ad Hoc Networks - 2014 ABSTRACT: This paper considers the problem of joint topologytransparent scheduling (TTS) and quality-of-service (QoS) routing in
PROJECT TITLE :Reviews [review of A science of operations: machines, logic, and the invention of programming (Priestley, M.; 2011) and Moving targets: Elliott-automation and the dawn of the computer age in Britain (Lavington,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry