The design of adders on quantum dot cellular automata (QCA) has been of recent interest. While few designs exist, investigations on reduction of QCA primitives (majority gates and inverters) for various adders are limited. In this paper, we present a number of new results on majority logic. We use these results to present efficient QCA designs for the ripple carry adder (RCA) and various prefix adders. We derive bounds on the number of majority gates for -bit RCA and -bit Brent-Kung, Kogge-Stone, Ladner-Fischer, and Han-Carlson adders. We further show that the Brent-Kung adder has lower delay than the best existing adder designs as well as other prefix adders. In addition, signal integrity and robustness studies show that the proposed Brent-Kung adder is fairly well-suited to changes in time-related parameters as well as temperature. Detailed simulations using QCADesigner are presented.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :A New Construction of EVENODD Codes With Lower Computational Complexity - 2018ABSTRACT:EVENODD codes are binary array codes for correcting double disk failures in RAID-half-dozen with asymptotically optimal encoding
PROJECT TITLE :Design, Analysis, and Implementation of ARPKI: An Attack-Resilient Public-Key Infrastructure - 2018ABSTRACT:This Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is based on a weakest-link security
PROJECT TITLE :On the Complexity of Bounded View Propagation for Conjunctive Queries - 2018ABSTRACT:The read propagation problem is a class of read update downside in relational databases [7], involving deletion and insertion
PROJECT TITLE :Fractional- Order Differentiators and Integrators with Reduced Circuit Complexity - 2018ABSTRACT:Fractional-order differentiation and integration stages are essential building blocks for performing signal processing
PROJECT TITLE :Reducing the Hardware Complexity of a Parallel Prefix Adder - 2018ABSTRACT:Currently, parallel prefix adders (PPA) are thought of effective combinational circuits for performing the binary addition of two multi-bit

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry