ABSTRACT:

We present a novel approach for visual detection and attribute-based search of vehicles in crowded surveillance scenes. Large-scale processing is addressed along two dimensions: 1) large-scale indexing, where hundreds of billions of events need to be archived per month to enable effective search and 2) learning vehicle detectors with large-scale feature selection, using a feature pool containing millions of feature descriptors. Our method for vehicle detection also explicitly models occlusions and multiple vehicle types (e.g., buses, trucks, SUVs, cars), while requiring very few manual labeling. It runs quite efficiently at an average of 66 Hz on a conventional laptop computer. Once a vehicle is detected and tracked over the video, fine-grained attributes are extracted and ingested into a database to allow future search queries such as “Show me all blue trucks larger than 7 ft. length traveling at high speed northbound last Saturday, from 2 pm to 5 pm”. We perform a comprehensive quantitative analysis to validate our approach, showing its usefulness in realistic urban surveillance settings.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Efficient Secure Outsourcing of Large-Scale Sparse Linear Systems of Equations - 2018ABSTRACT:Solving large-scale sparse linear systems of equations (SLSEs) is one in all the foremost common and basic problems in
PROJECT TITLE :Large-Scale Kernel-Based Feature Extraction via Low-Rank Subspace Tracking on a Budget - 2018ABSTRACT:Kernel-primarily based ways get pleasure from powerful generalization capabilities in learning a selection of
PROJECT TITLE :Efficient Compressive Channel Estimation for Millimeter-Wave Large-Scale Antenna Systems - 2018ABSTRACT:Giant-scale antenna systems are thought of as a viable technology to catch up on huge path loss in millimeter-wave
PROJECT TITLE :Decentralized RLS With Data-Adaptive Censoring for Regressions Over Large-Scale Networks - 2018ABSTRACT:The deluge of networked information motivates the development of algorithms for computation- and communication-economical
PROJECT TITLE :Algorithm and Architecture of a Low-Complexity and High-Parallelism Preprocessing-Based K -Best Detector for Large-Scale MIMO Systems - 2018ABSTRACT:As a branch of sphere decoding, the K-best method has played an