A microelectromechanical-systems-based phase change actuator has been developed and tested for high-speed mechanical power output and force generation. This actuator is well suited for a variety of advanced devices like tactile displays or micro fluidic systems. The device features two thin membranes that bound a cavity filled with working fluid. The working fluid boils at low temperature. Two sizes of actuator are tested, an actuator with membrane sidelengths of 5 mm and an actuator with top membrane sidelength of 10 mm. Two top membrane materials are explored consisting of 2 μm thick silicon and 300 nm thick silicon nitride. Heat addition is through the lower membrane which is fabricated with novel capillary structures designed to increase the efficiency of actuator operation. The actuator is shown to produce up to 2.6 mW of mechanical power output and generate an applied force of 43 mN. Operating speeds up to 100 Hz are demonstrated.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Modeling and management of photovoltaic and fuel cell based alternative power systemsABSTRACT:Photovoltaic (PV) systems and fuel cells (FCs) represent interesting solutions as being various power sources with
PROJECT TITLE :Most power purpose tracking for photovoltaic solar pump basedon ANFIS tuning systemABSTRACT:Solar photovoltaic (PV) systems are a clean and naturally replenished energy source. PV panels have a distinctive point
PROJECT TITLE :A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systemsABSTRACT:Most power purpose tracking (MPPT) techniques are thought of a crucial part in photovoltaic system design to
PROJECT TITLE :Back stepping based non-linear management for most power purpose tracking inphotovoltaic systemABSTRACT:The increasing energy demands, depleting fossil fuels and increasing world warming due to carbon emission has
PROJECT TITLE :GI primarily based Management Scheme for Single Stage Grid Interfaced SECS for Power Quality ImprovementABSTRACT:This paper presents an improved generalized integrator (GI)-based control with a frequency locked

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry