Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches


This paper reports on the implementation of low-voltage complementary mechanical logic achieved by using body-biased aluminum nitride (AlN) piezoelectric microelectromechanical systems (MEMS) switches. By biasing the equivalent body of a four terminal mechanical switch with a fixed voltage, the threshold voltage of the mechanical transistor has been precisely tuned and the voltage swing used for implementing digital functionalities reduced to very low values ($leq pm$2 V). Thanks to the use of a mechanical switching mechanism, the AlN MEMS switches have exhibited an extremely low subthreshold slope (0.065 mV/dec), which sets the promise for even further reduction of the voltage swing to less than 100 mV. By using opposite body biases, the same mechanical switch has been made to operate as an equivalent n-like or p-like (complementary) device. Two basic AlN mechanical switch elements have then been used to form a body-biased inverter operating at 100 Hz with a $pm$1.5-V voltage swing. Furthermore, low voltage and functionally complete logic elements (NAND and NOR) implemented by using body-biased complementary and thin-film (250 nm thick) AlN-based piezoelectric mechanical switches have been synthesized. Finally, scaling rules for these devices are derived, and the key challenges that will need to be addressed to achieve further miniaturization are presented.$hfill$[2011-0225]

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Video Dissemination over Hybrid Cellular and Ad Hoc Networks - 2014 ABSTRACT: We study the problem of disseminating videos to mobile users by using a hybrid cellular and ad hoc network. In particular, we formulate
PROJECT TITLE : Secure and Efficient Data Transmission for Cluster-Based Wireless Sensor Networks - 2014 ABSTRACT: Secure data transmission is a critical issue for wireless sensor networks (WSNs). Clustering is an effective
PROJECT TITLE : PSR A Lightweight Proactive Source Routing Protocol For Mobile Ad Hoc Networks - 2014 ABSTRACT: Opportunistic data forwarding has drawn much attention in the research community of multihop wireless networking,
PROJECT TITLE : Network Resource Allocation for Users With Multiple Connections Fairness and Stability - 2014 ABSTRACT: This paper studies network resource allocation between users that manage multiple connections, possibly
PROJECT TITLE : Joint Routing and Medium Access Control in Fixed Random Access Wireless Multihop Networks - 2014 ABSTRACT: We study cross-layer design in random-access-based fixed wireless multihop networks under a physical

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry