A Physics-Based Predictive Modeling Framework for Dielectric Charging and Creep in RF MEMS Capacitive Switches and Varactors


In this paper, we develop a physics-based theoretical modeling framework to predict the device lifetime defined by the dominant degradation mechanisms of RF microelectromechanical systems (MEMS) capacitive switches (i.e., dielectric charging) and varactors (i.e., creep), respectively. Our model predicts the parametric degradation of performance metrics of RF MEMS capacitive switches and varactors, such as pull-in/pull-out voltages, pull-in time, impact velocity, and capacitance both for dc and ac bias. Specifically, for dielectric charging, the framework couples an experimentally validated theoretical model of time-dependent charge injection into the bulk traps with the Euler-Bernoulli equation for beam mechanics to predict the effect of dynamic charge injection on the performance of a capacitive switch. For creep, we generalize the Euler-Bernoulli equation to include a spring-dashpot model of viscoelasticity to predict the time-dependent capacitance change of a varactor due to creep. The new model will contribute to the reliability aware design and optimization of the capacitive MEMS switches and varactors. $hfill$[2011-0086]

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images - 2018ABSTRACT:This Project proposes the Relit Spectral AngleStacked Autoencoder, a novel unsupervised feature
PROJECT TITLE :A New Physics-Based Drying Model of Thin Clothes in Air-Vented Clothes DryersABSTRACT:A replacement physics-based mostly model for the drying process is introduced, capable of accounting for both cloth sizes and
PROJECT TITLE :Modeling, Limits and Baseline of Voltage Interharmonics Generation in Andean Wind FarmsABSTRACT:The subsequent study focuses on the analysis of voltage interharmonics based mostly on power quality experimental information
PROJECT TITLE :Modeling, Measuring, and Compensating Color Weak VisionABSTRACT:We tend to use strategies from Riemann geometry to investigate transformations between the colour spaces of color-normal and color-weak observers.
PROJECT TITLE :Integrated Optimization of Battery Sizing, Charging, and Power Management in Plug-In Hybrid Electric VehiclesABSTRACT:This brief presents an integrated optimization framework for battery sizing, charging, and on-road

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry