Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are in low dimensionality, but often become computationally expensive or even infeasible when handling high-dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions with side information. It aims to learn a Bregman distance function using a nonparametric approach that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general than the conventional approach for distance metric learning, and is able to handle high-dimensional data efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance functions with side information reveals clear advantages of the proposed technique.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

MTechProjects.com offering final year Python Based Machine Learning MTech Projects, Machine Learning IEEE Projects, IEEE Machine Learning Projects, Machine Learning MS Projects, Python Based Machine Learning BTech Projects, Machine
PROJECT TITLE :A Machine Learning Approach for Tracking and Predicting Student Performance in Degree Programs - 2018ABSTRACT:Accurately predicting students' future performance based on their ongoing academic records is crucial
PROJECT TITLE :Optimal Bayesian Transfer Learning - 2018ABSTRACT:Transfer learning has recently attracted important research attention, because it simultaneously learns from different supply domains, that have plenty of labeled
PROJECT TITLE :Learning Graphs With Monotone Topology Properties and Multiple Connected Components - 2018ABSTRACT:Recent papers have formulated the problem of learning graphs from information as an inverse covariance estimation
PROJECT TITLE :Alternative to Extended Block Sparse Bayesian Learning and Its Relation to Pattern-Coupled Sparse Bayesian Learning - 2018ABSTRACT:We tend to consider the matter of recovering block sparse signals with unknown block

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry