PROJECT TITLE :

Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques

ABSTRACT:

Recommender systems are becoming increasingly important to individual users and businesses for providing personalized recommendations. However, while the majority of algorithms proposed in recommender systems literature have focused on improving recommendation accuracy (as exemplified by the recent Netflix Prize competition), other important aspects of recommendation quality, such as the diversity of recommendations, have often been overlooked. In this paper, we introduce and explore a number of item ranking techniques that can generate substantially more diverse recommendations across all users while maintaining comparable levels of recommendation accuracy. Comprehensive empirical evaluation consistently shows the diversity gains of the proposed techniques using several real-world rating data sets and different rating prediction algorithms.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :DCAP: Improving the Capacity of WiFi Networks with Distributed Cooperative Access Points - 2018ABSTRACT:This Project presents the Distributed Cooperative Access Points (DCAP) system that may simultaneously serve
PROJECT TITLE :Improving Error Correction Codes for Multiple-Cell Upsets in Space Applications - 2018ABSTRACT:Currently, faults suffered by SRAM memory systems have increased because of the aggressive CMOS integration density.
PROJECT TITLE :Improving Lifetime of Fuel Cell in Hybrid Energy Management System by Lure-Lyapunov Based Control Formulation - 2017ABSTRACT:Fuel cell (FC) is emerging as a clean and nonpollutant energy source and is being used
PROJECT TITLE : Further Improving Efficiency of Higher-Order Masking Schemes by Decreasing Randomness Complexitys - 2017 ABSTRACT: Most cryptographic implementations are prone to side-channel attacks. Among the countermeasures,
PROJECT TITLE : Survey on Improving Data Utility in Differentially Private Sequential Data Publishing - 2017 ABSTRACT: The large generation, intensive sharing, and deep exploitation of knowledge in the massive knowledge era

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry