PROJECT TITLE :

An Efficient Formulation of the Improved Visual Assessment of Cluster Tendency (iVAT) Algorithm

ABSTRACT:

The VAT algorithm is a visual method for determining the possible number of clusters in, or the cluster tendency of a set of objects. The improved VAT (iVAT) algorithm uses a graph-theoretic distance transform to improve the effectiveness of the VAT algorithm for “tough” cases where VAT fails to accurately show the cluster tendency. In this paper, we present an efficient formulation of the iVAT algorithm which reduces the computational complexity of the iVAT algorithm from O(N^3) to O(N^2). We also prove a direct relationship between the VAT image and the iVAT image produced by our efficient formulation. We conclude with three examples displaying clustering tendencies in three of the Karypis data sets that illustrate the improvement offered by the iVAT transformation. We also provide a comparison of iVAT images to those produced by the Reverse Cuthill-Mckee (RCM) algorithm; our examples suggest that iVAT is superior to the RCM method of display.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Efficient Secure Outsourcing of Large-Scale Sparse Linear Systems of Equations - 2018ABSTRACT:Solving large-scale sparse linear systems of equations (SLSEs) is one in all the foremost common and basic problems in
PROJECT TITLE :Distributed Feature Selection for Efficient Economic Big Data Analysis - 2018ABSTRACT:With the rapidly increasing popularity of economic activities, a large amount of economic data is being collected. Although
PROJECT TITLE :Efficient Wideband DOA Estimation Through Function Evaluation Techniques - 2018ABSTRACT:This Project presents an economical analysis methodology for the functions involved within the computation of direction-of-arrival
PROJECT TITLE :Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs - 2018ABSTRACT:This Project introduces the graph-structured recursive least
PROJECT TITLE :Efficient Partial-Sum Network Architectures for List Successive-Cancellation Decoding of Polar Codes - 2018ABSTRACT:List successive cancellation decoder (LSCD) architectures have been recently proposed for the decoding

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry