Sell Your Projects | My Account | Careers | This email address is being protected from spambots. You need JavaScript enabled to view it. | Call: +91 9573777164

Sparsity-based signal processing for noise radar imaging

1 1 1 1 1 Rating 4.80 (90 Votes)


Sparsity-based signal processing for noise radar imaging


Noise radar systems transmitting incoherent signal sequences have been proposed as powerful candidates for implementing compressively sampled detection and imaging systems. This paper presents an analysis of compressively sampled noise radar systems by formulating ultrawideband (UWB) compressive noise radar imaging as a downside of inverting ill-posed linear systems with circulant system matrices. The nonlinear nature of compressive signal recovery presents challenges in characterizing the performance of radar imaging systems. The suitability of noise waveforms for compressive radar is demonstrated using section transition diagrams and transform point spread functions (TPSFs). The numerical simulations are designed to provide a compelling validation of the system. Nonidealities occurring in practical compressive noise radar systems are addressed by learning the properties of the transmit waveform. The results recommend that waveforms and system matrices that arise in sensible noise radar systems are appropriate for compressive signal recovery. Field imaging experiments on numerous target scenarios employing a UWB millimeter wave noise radar validate our analytical results and therefore the theoretical guarantees of compressive sensing.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

Sparsity-based signal processing for noise radar imaging - 4.8 out of 5 based on 90 votes

Project EnquiryLatest Ready Available Academic Live Projects in affordable prices

Included complete project review wise documentation with project explanation videos and Much More...