A Fully Passive Wireless Backscattering Neurorecording Microsystem Embedded in Dispersive Human-Head Phantom Medium


This letter reports a microfabricated fully passive circuit for extracting and transmitting targeted neuropotentials wirelessly via the backscattering effect without any internal power source or harvester. Radiating electromagnetic waves experience attenuation, phase and wavelength alteration, and random scattering effects when propagating through dispersive biological media (i.e., human head), and these effects are augmented at microwave frequencies required for practical miniaturization of the integrated microsystem antenna. The authors examine the fully passive microsystem for wireless recording of emulated neuropotentials as implanted in a phantom mimicking the human head. The wireless measurements of emulated neuropotentials acquired by the microsystem demonstrate its promising capabilities for neurological applications.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Translating Algorithms to Handle Fully Homomorphic Encrypted Data on the Cloud - 2018ABSTRACT:Cloud provides giant shared resources where users (or foundations) can get pleasure from the facility of storing data
PROJECT TITLE :Low Leakage Fully Half-Select-Free Robust SRAM Cells with BTI Reliability Analysis - 2018ABSTRACT:This paper presents two totally different topologies of 11T SRAM cells with absolutely 0.5-select-free strong operation
PROJECT TITLE :Low-Complexity VLSI Design of Large Integer Multipliers for Fully Homomorphic Encryption - 2018ABSTRACT:Giant integer multiplication has been widely employed in fully homomorphic encryption (FHE). Implementing possible
PROJECT TITLE :Effect of Switched-Capacitor CMFB on the Gain of Fully Differential OpAmp for Design of Integrators - 2018ABSTRACT:Switched capacitor common-mode feedback (SC-CMFB) may be a common technique for stabilization of
PROJECT TITLE :A Fully Digital Front-End Architecture for ECG Acquisition System With 0.5 V Supply - 2017ABSTRACT:This paper presents a brand new power-economical electrocardiogram acquisition system that uses a fully digital

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry