An Investigation Into the Understanding and Skills of First-Year Electrical Engineering Students


In response to demands from industry and the profession for more graduates, first-year engineering numbers have grown considerably over the last decade, matched by an increasing diversity of academic backgrounds. In order to support first-year students effectively, and ensure the courses they take remain appropriately pitched, the academic preparedness of these students must be determined. Since 2007, the lecturers in the compulsory first-year Electrical and Digital Systems course at the University of Auckland (UoA), Auckland, New Zealand, have administered a short diagnostic test to determine the level of conceptual understanding of electricity and electromagnetics possessed by the incoming students. This paper presents and discusses student understanding of dc circuit theory as revealed by the diagnostic test and subsequent investigations. The evidence is indicative of both flawed conceptual models and context-triggered misapplication of fundamental rules. Parallels are drawn with the results of research conducted elsewhere, indicating the misconceptions are robust and pervasive, crossing institutional and national boundaries. Not only are concepts such as current and voltage poorly understood, but even more basic concepts such as series and parallel connections are confusing for a significant number of students. Understanding the incorrect models that underlie these basic misconceptions is the first step to correcting them. Only then can students proceed to the more advanced concepts that engineering graduates are required to master.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Experimental Investigation on a Hybrid Series Active Power Compensator to Improve Power Quality of Typical Households - 2016 ABSTRACT: In this paper, a transformerless hybrid series active filter employing a
PROJECT TITLE : A Performance Investigation of a Four-Switch Three-Phase Inverter-Fed IM Drives at Low Speeds Using Fuzzy Logic and PI Controller - 2016 ABSTRACT: This paper presents a speed controller employing a fuzzy-logic
PROJECT TITLE :Fluorescence microscopy investigation of InGaN-based light-emitting diodesABSTRACT:The authors image the spatial dependent luminescent properties of InGaN quantum wells (QWs) in light-emitting diodes (LEDs) using
PROJECT TITLE :Investigation of Spatial Control Strategies for AHWR: A Comparative StudyABSTRACT:Massive nuclear reactors such as the Advanced Serious Water Reactor (AHWR), are susceptible to xenon-induced spatial oscillations
PROJECT TITLE :Investigation of the Blend Morphology in Bulk-Heterojunction Organic Solar CellsABSTRACT:The intermixing of donor and acceptor materials within the active layer of bulk-heterojunction organic solar cells ends up

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry