Consensus is one of the key problems in fault-tolerant distributed computing. Although the solvability of consensus is now a well-understood problem, comparing different algorithms in terms of efficiency is still an open problem. In this paper, we address this question for round-based consensus algorithms using communication predicates, on top of a partial synchronous system that alternates between good and bad periods (synchronous and nonsynchronous periods). Communication predicates together with the detailed timing information of the underlying partially synchronous system provide a convenient and powerful framework for comparing different consensus algorithms and their implementations. This approach allows us to quantify the required length of a good period to solve a given number of consensus instances. With our results, we can observe several interesting issues, such as the number of rounds of an algorithm is not necessarily a good metric for its performance.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Cost-Optimal Caching for D2D Networks With User Mobility: Modeling, Analysis, and Computational Approaches - 2018ABSTRACT:Caching well-liked files at the user equipments (UEs) provides an efficient way to alleviate
PROJECT TITLE :Design, Analysis, and Implementation of ARPKI: An Attack-Resilient Public-Key Infrastructure - 2018ABSTRACT:This Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is based on a weakest-link security
PROJECT TITLE :Shadow Attacks Based on Password Reuses: A Quantitative Empirical Analysis - 2018ABSTRACT:With the proliferation of internet sites, the protection level of password-protected accounts is now not purely determined
PROJECT TITLE : Quantitative Modeling and Analytical Calculation of Elasticity in Cloud Computing - 2017 ABSTRACT: Elasticity is a elementary feature of cloud computing and will be thought-about as a great advantage and a key
PROJECT TITLE :Quantitative Analysis Method of Error Sources in Magnetohydrodynamic Angular Rate Sensor for Structure OptimizationABSTRACT:A comprehensive study on the error analysis of magnetohydrodynamic (MHD) angular rate sensor

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry