A helicopter maneuvers naturally in an environment where the execution of the task can easily be affected by atmospheric turbulence, which leads to variations of its model parameters. This paper discusses the nature of the disturbances acting on the helicopter and proposes an approach to counter the effects. The disturbance consists of vertical and lateral wind gusts. A 7-degrees-of-freedom (DOF) nonlinear Lagrangian model with unknown disturbances is used. The model presents quite interesting control challenges due to nonlinearities, aerodynamic forces, under actuation, and its non-minimum phase dynamics. Two approaches of robust control are compared via simulations with a Tiny CP3 helicopter model: an approximate feedback linearization and an active disturbance rejection control using the approximate feedback linearization procedure. Several simulations show that adding an observer can compensate the effect of disturbances. The proposed controller has been tested in a real-time application to control the yaw angular displacement of a Tiny CP3 mini-helicopter mounted on an experiment platform.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Robust Modulation of PWM-Based Multi-Level Perpendicular Magnetic Recording for Conventional Media - 2018ABSTRACT:During this letter, we propose a sturdy 3-ary modulation for a pulse width modulation (PWM)-based
PROJECT TITLE :Robust Automated VHF Modulation Recognition Based on Deep Convolutional Neural Networks - 2018ABSTRACT:This letter proposes a completely unique modulation recognition algorithm for terribly high frequency (VHF)
PROJECT TITLE :Robust Chance Constrained Power Allocation Scheme for Multiple Target Localization in Colocated MIMO Radar System - 2018ABSTRACT:Taking into consideration the probabilistic uncertainty on the target radar cross
PROJECT TITLE :A Robust Parallel Algorithm for Combinatorial Compressed Sensing - 2018ABSTRACT:It was shown in previous work that a vector x E R n with at most k
PROJECT TITLE :Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model - 2018ABSTRACT:Low-light image enhancement ways based on classic Retinex model try to govern the estimated illumination and to project it

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry