ABSTRACT:

Mitigating fuel starvation and improving load-following capability of solid oxide fuel cells (SOFC) are conflicting control objectives. In this paper, we address this issue using a hybrid SOFC ultracapacitor configuration. Fuel starvation is prevented by regulating the fuel cell current using a steady-state invariant relationship involving fuel utilization, fuel flow, and current. Two comprehensive control strategies are developed. The first is a Lyapunov-based nonlinear control and the second is a standard H∞ robust control. Both strategies additionally control the state of charge of the ultracapacitor that provides transient power compensation. A hardware-in-the-loop test stand is developed where the proposed control strategies are verified.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Robust Modulation of PWM-Based Multi-Level Perpendicular Magnetic Recording for Conventional Media - 2018ABSTRACT:During this letter, we propose a sturdy 3-ary modulation for a pulse width modulation (PWM)-based
PROJECT TITLE :Robust Automated VHF Modulation Recognition Based on Deep Convolutional Neural Networks - 2018ABSTRACT:This letter proposes a completely unique modulation recognition algorithm for terribly high frequency (VHF)
PROJECT TITLE :Robust Chance Constrained Power Allocation Scheme for Multiple Target Localization in Colocated MIMO Radar System - 2018ABSTRACT:Taking into consideration the probabilistic uncertainty on the target radar cross
PROJECT TITLE :A Robust Parallel Algorithm for Combinatorial Compressed Sensing - 2018ABSTRACT:It was shown in previous work that a vector x E R n with at most k
PROJECT TITLE :Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model - 2018ABSTRACT:Low-light image enhancement ways based on classic Retinex model try to govern the estimated illumination and to project it

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry