ABSTRACT:

This paper proposes a scheme for precise position control of a mechatronic servo system based on linear synchronous motors. The control is based on gain-scheduled proportional integral derivatives (PIDs) (known as NPID in related literature) and adaptive approximation of uncertainties. NPID and adaptive approximation are combined in a constructive way to inherit advantages and overcome limitations of the single methods. In particular, NPID is used to stabilize the nominal plant, and its gains are scheduled so as to minimize the effects of friction and other uncertainties. Adaptive approximation is used to compensate further effects of nonlinearities and obtain a better overall tracking accuracy. A report on an extensive experimental investigation is provided to illustrate the practical advantages of the proposed scheme.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Design, Control, and Validation of a Charge-Sustaining Parallel Hybrid BicycleABSTRACT:Traffic congestion, energy, and environmental concerns are boosting the interest for light electric vehicles. Electrically power-assisted
PROJECT TITLE :Power converters, control, and energy management for distributed generationABSTRACT:Distributed generation (DG) is anticipated to play a important role in the long run to enhance the quality of human life. DG and
PROJECT TITLE :A Robotic Leg Prosthesis: Design, Control, and ImplementationABSTRACT:This text describes the look and control of a powered knee and ankle prosthesis for transfemoral amputees. Following an outline of the design
PROJECT TITLE :Modeling, Control, and Experimental Validation of a High-Speed Supercavitating VehicleABSTRACT:Underwater vehicles that travel inside a bubble or supercavity provide possibilities for prime-speed and energy-economical
PROJECT TITLE : Modeling, Control, and Implementation of DC–DC Converters for Variable Frequency Operation (2014) ABSTRACT : In this paper, novel small-signal averaged models for dc-dc converters operating at variable switching

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry