ABSTRACT:

In this paper, a systematic method for designing a fixed-order controller for the track-following control of optical disc drives is proposed. The design specifications are given in the frequency domain and are expressed as frequency-domain inequalities. On the basis of the generalized Kalman-Yakubovich-Popov lemma, each frequency-domain inequality is converted into linear matrix inequalities of the controller parameters. The controller parameters can be computed efficiently by solving a convex optimization problem to maximize the loop gain around the rotational frequency while satisfying other frequency-domain specifications on the performance and stability. Experimental results show that a reasonable performance can be obtained by using a second-order controller, and the performance can be further improved by using a third-order controller.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :A Successive Optimization Approach to Pilot Design for Multi-Cell Massive MIMO Systems - 2018ABSTRACT:During this letter, we tend to introduce a completely unique pilot design approach that minimizes the entire
PROJECT TITLE :Spectrally Compatible Waveform Design for MIMO Radar in the Presence of Multiple Targets - 2018ABSTRACT:This Project investigates the matter of the spectrally compatible waveform style for multiple-input multiple-output
PROJECT TITLE :Relay Hybrid Precoding Design in Millimeter-Wave Massive MIMO Systems - 2018ABSTRACT:This Project investigates the relay hybrid precoding style in millimeter-wave massive multiple-input multiple-output systems.
PROJECT TITLE :Optimal Training Design for MIMO Systems With General Power Constraints - 2018ABSTRACT:Coaching design for general multiple-input multiple-output (MIMO) systems is investigated during this Project. Unlike previous
PROJECT TITLE :Optimal Filter Design for Signal Processing on Random Graphs: Accelerated Consensus - 2018ABSTRACT:In graph signal processing, filters arise from polynomials in shift matrices that respect the graph structure,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry