Neural-Network-Based Contouring Control for Robotic Manipulators in Operational Space


This brief presents a contouring control scheme for robotic manipulators. The geometric properties of the desired contour are incorporated in the controller design phase, and the resulting controller has been structured as a two-layered hierarchical control scheme that consists of an outer loop and an inner loop. The outer loop is formed by kinematic control system in operational space, which can be designed to assign different dynamics to the tangential, normal, and binormal direction of the desired contour. It is shown that the outer loop can provide a joint velocity reference signal to the inner one. The inner loop is used to implement a velocity servo control system at the robot joint level. Meanwhile, a radial basis function network is adopted to compensate for the nonlinear dynamics of the robotic manipulator, where a robust control strategy is used to suppress the modeling error of neural networks. Experimental results on the Zebra-Zero robotic manipulator have demonstrated the effectiveness of the proposed control scheme in comparison with other control strategies.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Design, Control, and Validation of a Charge-Sustaining Parallel Hybrid BicycleABSTRACT:Traffic congestion, energy, and environmental concerns are boosting the interest for light electric vehicles. Electrically power-assisted
PROJECT TITLE :Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric ActuatorsABSTRACT:Piezoelectric actuators (PEAs) are widely used in nanotechnology due to their characteristics of fast response, massive
PROJECT TITLE :Power converters, control, and energy management for distributed generationABSTRACT:Distributed generation (DG) is anticipated to play a important role in the long run to enhance the quality of human life. DG and
PROJECT TITLE :“Search, Track, and Kick to Virtual Target Point” of Humanoid Robots by a Neural-Network-Based Active Embedded Vision SystemABSTRACT:In this paper, the task of “search, track, and kick a ball to a virtual
PROJECT TITLE :A Robotic Leg Prosthesis: Design, Control, and ImplementationABSTRACT:This text describes the look and control of a powered knee and ankle prosthesis for transfemoral amputees. Following an outline of the design

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry