ABSTRACT:

We report the design of an ultra-low-power 32-channel neural-recording integrated circuit (chip) in a 0.18 μ m CMOS technology. The chip consists of eight neural recording modules where each module contains four neural amplifiers, an analog multiplexer, an A/D converter, and a serial programming interface. Each amplifier can be programmed to record either spikes or LFPs with a programmable gain from 49-66 dB. To minimize the total power consumption, an adaptive-biasing scheme is utilized to adjust each amplifier's input-referred noise to suit the background noise at the recording site. The amplifier's input-referred noise can be adjusted from 11.2 μVrms (total power of 5.4 μW) down to 5.4 μVrms (total power of 20 μW) in the spike-recording setting. The ADC in each recording module digitizes the a.c. signal input to each amplifier at 8-bit precision with a sampling rate of 31.25 kS/s per channel, with an average power consumption of 483 nW per channel, and, because of a.c. coupling, allows d.c. operation over a wide dynamic range. It achieves an ENOB of 7.65, resulting in a net efficiency of 77 fJ/State, making it one of the most energy-efficient designs for neural recording applications. The presented chip was successfully tested in an in vivo wireless recording experiment from a behaving primate with an average power dissipation per channel of 10.1 μ W. The neural amplifier and the ADC occupy areas of 0.03 mm2 and 0.02 mm2 respectively, making our design simultaneously area efficient and power efficient, thus enabling scaling to high channel-count systems.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Dynamically Updatable Ternary Segmented Aging Bloom Filter for OpenFlow-Compliant Low-Power Packet Processing - 2018ABSTRACT:OpenFlow, the most protocol for software-outlined networking, requires large-sized rule
PROJECT TITLE :A Low-Power High-Speed Comparator for Precise Applications - 2018ABSTRACT:A coffee-power comparator is presented. pMOS transistors are used at the input of the preamplifier of the comparator furthermore as the latch
PROJECT TITLE :Low-power Implementation of Mitchell's Approximate Logarithmic Multiplication for Convolutional Neural Networks - 2018ABSTRACT:This paper proposes an occasional-power implementation of the approximate logarithmic
PROJECT TITLE :Low-Power Approximate Multipliers Using Encoded Partial Products and Approximate Compressors - 2018ABSTRACT:Approximate computing has been thought of to boost the accuracy-performance tradeoff in error-tolerant
PROJECT TITLE :Vector Processing-Aware Advanced Clock-Gating Techniques for Low-Power Fused Multiply-Add - 2018ABSTRACT:The need for power potency is driving a rethink of style selections in processor architectures. Whereas vector

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry