ABSTRACT:

This paper presents an active electrode system for gel-free biopotential EEG signal acquisition. The system consists of front-end chopper amplifiers and a back-end common-mode feedback (CMFB) circuit. The front-end AC-coupled chopper amplifier employs input impedance boosting and digitally-assisted offset trimming. The former increases the input impedance of the active electrode to 2 GΩ at 1 Hz and the latter limits the chopping induced output ripple and residual offset to 2 mV and 20 mV, respectively. Thanks to chopper stabilization, the active electrode achieves 0.8 μVrms (0.5-100 Hz) input referred noise. The use of a back-end CMFB circuit further improves the CMRR of the active electrode readout to 82 dB at 50 Hz. Both front-end and back-end circuits are implemented in a 0.18 μm CMOS process and the total current consumption of an 8-channel readout system is 88 μA from 1.8 V supply. EEG measurements using the proposed active electrode system demonstrate its benefits compared to passive electrode systems, namely reduced sensitivity to cable motion artifacts and mains interference.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Network Resource Allocation for Users With Multiple Connections Fairness and Stability - 2014 ABSTRACT: This paper studies network resource allocation between users that manage multiple connections, possibly
PROJECT TITLE : Efficient Data Collection for Large-Scale Mobile Monitoring Applications - 2014 ABSTRACT: Radio frequency identification (RFID) and wireless sensor networks (WSNs) have been popular in the industrial field,
PROJECT TITLE :Network Traffic Classification Using Correlation Information - 2013ABSTRACT:Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent
PROJECT TITLE :Distributed Web Systems Performance Forecasting Using Turning Bands Method - 2013ABSTRACT:With the increasing development of distributed computer systems (DCSs) in networked industrial and manufacturing applications

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry