ABSTRACT:

Malware is any type of malicious code that has the potential to harm a computer or network. The volume of malware is growing at a faster rate every year and poses a serious global security threat. Although signature-based detection is the most widespread method used in commercial antivirus programs, it consistently fails to detect new malware. Supervised machine-learning models have been used to address this issue. However, the use of supervised learning is limited because it needs a large amount of malicious code and benign software to be labelled first. In this study, the authors propose a new method that uses single-class learning to detect unknown malware families. This method is based on examining the frequencies of the appearance of opcode sequences to build a machine-learning classifier using only one set of labelled instances within a specific class of either malware or legitimate software. The authors performed an empirical study that shows that this method can reduce the effort of labelling software while maintaining high accuracy.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Smartphone based Indoor Path Estimation and Localization without Human Intervention ABSTRACT: Many different kinds of indoor positioning systems have been developed as a result of the growing market interest in
PROJECT TITLE : Robust Fuzzy Learning for Partially Overlapping Channels Allocation in UAV Communication Networks ABSTRACT: The emerging cellular-enabled unmanned aerial vehicle (UAV) communication paradigm poses significant challenges
PROJECT TITLE : Prediction of Traffic Flow via Connnected Vehicles ABSTRACT: We propose a framework for short-term traffic flow prediction (STP) so that transportation authorities can take early actions to control flow and prevent
PROJECT TITLE : Passenger Demand Prediction with Cellular Footprints ABSTRACT: An accurate forecast of the demand for passengers across the entire city enables providers of online car-hailing services to more efficiently schedule
PROJECT TITLE : NCF: A Neural Context Fusion Approach to Raw Mobility Annotation ABSTRACT: Improving business intelligence in mobile environments requires a thorough comprehension of human mobility patterns on a point-of-interest

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry