PROJECT TITLE :

Scalable Montgomery Modular Multiplication Architecture with Low-Latency and Low-Memory Bandwidth Requirement (2014)

ABSTRACT :

Montgomery modular multiplication is widely used in public-key cryptosystems. This work shows how to relax the data dependency in conventional word-based algorithms to maximize the possibility of reusing the current words of variables. With the greatly relaxed data dependency, we then proposed a novel scheduling scheme to alleviate the number of memory access in the developed scalable architecture. Analytical results show that the memory bandwidth requirement of the proposed scalable architecture is almost 1/(w - 1) times that of conventional scalable architectures, where w denotes word size. The proposed one also retains a latency of exactly one cycle between the operations of the same words in two consecutive iterations of the Montgomery modular multiplication algorithm when employing enough processing elements. Compared to the design in the related work, experimental results demonstrate that the proposed one achieves an almost 54 percent reduction in power consumption with no degradation in throughput. The reduced number of memory access not only leads to lower power consumption, but also facilitates the design of scalable architectures for any precision of operands.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Measuring Fitness and Precision of Automatically Discovered Process Models: A Principled and Scalable Approach ABSTRACT: We are able to generate a process model by using automated process discovery techniques,
PROJECT TITLE : Scalable and Practical Natural Gradient for Large-Scale Deep Learning ABSTRACT: Because of the increase in the effective mini-batch size, the generalization performance of the models produced by large-scale distributed
PROJECT TITLE : On Model Selection for Scalable Time Series Forecasting in Transport Networks ABSTRACT: When it comes to short-term traffic predictions, up to the scale of one hour, the transport literature is quite extensive;
PROJECT TITLE : PPD: A Scalable and Efficient Parallel Primal-Dual Coordinate Descent Algorithm ABSTRACT: One of the most common approaches to optimization is called Dual Coordinate Descent, or DCD for short. Due to the sequential
PROJECT TITLE : Blockchain and AI-empowered Healthcare Insurance Fraud Detection An Analysis, Architecture, and Future Prospects ABSTRACT: As the prevalence of health problems continues to rise, having health insurance has

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry