PROJECT TITLE :

Optimizing Cloud Resources for Delivering IPTV Services through Virtualization

ABSTRACT:

Virtualized cloud-based services can take advantage of statistical multiplexing across applications to yield significant cost savings. However, achieving similar savings with real-time services can be a challenge. In this paper, we seek to lower a provider's costs for real-time IPTV services through a virtualized IPTV architecture and through intelligent time-shifting of selected services. Using Live TV and Video-on-Demand (VoD) as examples, we show that we can take advantage of the different deadlines associated with each service to effectively multiplex these services. We provide a generalized framework for computing the amount of resources needed to support multiple services, without missing the deadline for any service. We construct the problem as an optimization formulation that uses a generic cost function. We consider multiple forms for the cost function (e.g., maximum, convex and concave functions) reflecting the cost of providing the service. The solution to this formulation gives the number of servers needed at different time instants to support these services. We implement a simple mechanism for time-shifting scheduled jobs in a simulator and study the reduction in server load using real traces from an operational IPTV network. Our results show that we are able to reduce the load by ~ 24% (compared to a possible ~ 31%). We also show that there are interesting open problems in designing mechanisms that allow time-shifting of load in such environments.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Adaptive Lower-level Driven Compaction to Optimize LSM-Tree Key-Value Stores ABSTRACT: Log-structured merge (LSM) tree key-value stores have been widely implemented in many NoSQL and SQL systems. These stores
PROJECT TITLE : A Patient-Centric Healthcare Framework Reference Architecture for Better Semantic Interoperability based on Blockchain, Cloud, and IoT ABSTRACT: The application-centric perspective gives rise to the distributed
PROJECT TITLE :Optimizing Performance of Co-Existing Underlay Secondary Networks - 2018ABSTRACT:In this Project, we have a tendency to analyze total throughput and (asymptotic) total ergodic rate performance of 2 co-existing downlink
PROJECT TITLE :Optimizing Internet Transit Routing for Content Delivery Networks - 2018ABSTRACT:Content delivery networks (CDNs) maintain multiple transit routes from content distribution servers to eyeball ISP networks that
PROJECT TITLE :A Ternary Unification Framework for Optimizing TCAM-Based Packet Classification Systems - 2018ABSTRACT:Packet classification is that the key mechanism for enabling many networking and security services. Ternary

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry