PROJECT TITLE :

Fast Data Collection in Tree-Based Wireless Sensor Networks

ABSTRACT:

We investigate the following fundamental question-how fast can information be collected from a wireless sensor network organized as tree? To address this, we explore and evaluate a number of different techniques using realistic simulation models under the many-to-one Communication paradigm known as convergecast. We first consider time scheduling on a single frequency channel with the aim of minimizing the number of time slots required (schedule length) to complete a convergecast. Next, we combine scheduling with transmission power control to mitigate the effects of interference, and show that while power control helps in reducing the schedule length under a single frequency, scheduling transmissions using multiple frequencies is more efficient. We give lower bounds on the schedule length when interference is completely eliminated, and propose algorithms that achieve these bounds. We also evaluate the performance of various channel assignment methods and find empirically that for moderate size networks of about 100 nodes, the use of multifrequency scheduling can suffice to eliminate most of the interference. Then, the data collection rate no longer remains limited by interference but by the topology of the routing tree. To this end, we construct degree-constrained spanning trees and capacitated minimal spanning trees, and show significant improvement in scheduling performance over different deployment densities. Lastly, we evaluate the impact of different interference and channel models on the schedule length.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Fast Globally Optimal Transmit Antenna Selection and Resource Allocation Scheme in mmWave D2D Networks ABSTRACT: The process of transmit antenna selection, abbreviated as TAS at base stations, has been the subject
PROJECT TITLE : Fast Multi-Criteria Service Selection for Multi-User Composite Applications ABSTRACT: Paradigms such as Software as a Service (SaaS) and Service-Based Systems (SBSs), which are becoming more prevalent as cloud
PROJECT TITLE : Traffic Prediction and Fast Uplink for Hidden Markov IoT Models ABSTRACT: In this work, we present a novel framework for the traffic prediction and fast uplink (FU) capabilities of Internet of Things (IoT) networks
PROJECT TITLE : A Multi-criteria Approach for Fast and Robust Representative Selection from Manifolds ABSTRACT: The problem of representative selection can be summed up as the challenge of selecting a small number of informative
PROJECT TITLE : Deadline-Aware Fast One-to-Many Bulk Transfers over Inter-Datacenter Networks ABSTRACT: An ever-increasing number of cloud services are being run on a global scale. In order to increase both the quality and

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry